欢迎您访问广东成考网!网站为考生提供广东成考信息服务,供学习交流使用,非政府官方网站,官方信息以广东省招生考试院(www.eaagz.org.cn)为准! 登录 | 网站导航

广东成考网

成考热线:177-2280-6683

考办电话 | 在线提问 | 公众号

2022年广东成人高考高起点《文数》重点考点:数列的通项与求和

编辑整理:广东成考网 发表时间:2022-03-16 15:46:52   【 

2022年广东成人高考高起点《文数》重点考点:数列的通项与求和


数列的通项与求和

数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和Sn可视为数列{Sn}的通项。通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是成人高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法.


●难点磁场

(★★★★★)设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.

(1)写出数列{an}的前3项.

(2)求数列{an}的通项公式(写出推证过程)

(3)令bn= (n∈N*),求 (b1+b2+b3+…+bn-n).


●案例探究

[例1]已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),

(1)求数列{an}和{bn}的通项公式;

(2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有 =an+1成立,求 .

命题意图:本题主要考查等差、等比数列的通项公式及前n项和公式、数列的极限,以及运算能力和综合分析问题的能力.属★★★★★级题目.

知识依托:本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n项和,实质上是该数列前n项和与数列{an}的关系,借助通项与前n项和的关系求解cn是该条件转化的突破口.

错解分析:本题两问环环相扣,(1)问是基础,但解方程求基本量a1、b1、d、q,计算不准易出错;(2)问中对条件的正确认识和转化是关键.

技巧与方法:本题(1)问运用函数思想转化为方程问题,思路较为自然,(2)问“借鸡生蛋”构造新数列{dn},运用和与通项的关系求出dn,丝丝入扣.

解:(1)∵a1=f(d-1)=(d-2)2,a3=f(d+1)=d2,

∴a3-a1=d2-(d-2)2=2d,

∵d=2,∴an=a1+(n-1)d=2(n-1);又b1=f(q+1)=q2,b3=f(q-1)=(q-2)2,

∴ =q2,由q∈R,且q≠1,得q=-2,

∴bn=b·qn-1=4·(-2)n-1

(2)令 =dn,则d1+d2+…+dn=an+1,(n∈N*),

∴dn=an+1-an=2,

∴ =2,即cn=2·bn=8·(-2)n-1;∴Sn= [1-(-2)n].



《广东成考网》免责声明:

1、由于考试政策等各方面情况的调整与变化,本网提供的考试信息仅供参考,最终考试信息请以省考试院及院校官方发布的信息为准。

2、本站内容部分信息均来源网络收集整理或来源出处标注为其它媒体的稿件转载,免费转载出于非商业性学习目的,版权归原作者所有,如有内容与版权问题等请与本站联系。联系邮箱:812379481@qq.com。

广东成考便捷服务